Recent results from Telescope Array

CosPA 2013 Cosmic Rays 11/14

Takeshi Okuda (Ritsumeikan University) for Telescope Array Collaboration

Outline

- Recent Physics Result
 - Energy Spectrum
 - Mass Composition
 - Photon Limit
 - Anisotropy
- Experiment for Extended Energy Region
 - TA Low Energy Extension
 - TA High Energy Extension
- TA Affiliate Experiment

Telescope Array Collaboration

T. Abu-Zayyad^a, M. Allen^a, R. Anderson^a, R. Azuma^b, E. Barcikowski^a, J. W. Belz^a, D. R. Bergman^a, S. A. Blake^a, R. Cady^a, M. J. Chae^c, B. G. Cheon^d, J. Chiba^e, M. Chikawa^f, W. R. Cho^g, T. Fujii^h, M. Fukushima^{h,i}, K. Goto^j, W. Hanlon^a, Y. Hayashi^j, N. Hayashida^k, K. Hibino^k, K. Honda^l, D. Ikeda^h, N. Inoue^m, T. Ishii^l, R. Ishimori^b, H. Itoⁿ, D. Ivanov^{a,o}, C. C. H. Jui^a, K. Kadota^p, F. Kakimoto^b, O. Kalashev^q, K. Kasahara^r, H. Kawai^s, S. Kawakami^j, S. Kawana^m, K. Kawata^h, E. Kido^h, H. B. Kim^d, J. H. Kim^a, J. H. Kim^d, S. Kitamura^b, Y. Kitamura^b, V. Kuzmin^q, Y. J. Kwon^g, J. Lan^a, J.P. Lundquist^a, K. Machida^I, K. Martensⁱ, T. Matsuda^t, T. Matsuyama^j, J. N. Matthews^a, M. Minamino^j, K. Mukai^l, I. Myers^a, K. Nagasawa^m, S. Nagatakiⁿ, T. Nakamura^u, H. Nanpei^j, T. Nonaka^h, A. Nozato^f, S. Ogio^j, S. Oh^c, M. Ohnishi^h, H. Ohoka^h, K. Oki^h, T. Okuda^v, M. Onoⁿ, A. Oshima^j, S. Ozawa^r, I. H. Park^w, M. S. Pshirkov^x, D. C. Rodriguez^a, G. Rubtsov^q, D. Ryu^y, H. Sagawa^h, N. Sakurai^j, A. L. Sampson^a, L. M. Scott^o, P. D. Shah^a, F. Shibata^l, T. Shibata^h, H. Shimodaira^h, B. K. Shin^d, T. Shirahama^m, J. D. Smith^a, P. Sokolsky^a, R. W. Springer^a, B. T. Stokes^a, S. R. Stratton^{a,o}, T. A. Stroman^a, M. Takamura^e, A. Taketa^z, M. Takita^h, Y. Tameda^k, H. Tanaka^j, K. Tanaka^{aa}, M. Tanaka^t, S. B. Thomas^a, G. B. Thomson^a, P. Tinyakov^{q,x}, I. Tkachev^q, H. Tokuno^b, T. Tomida^{ab}, S. Troitsky^q, Y. Tsunesada^b, K. Tsutsumi^b, Y. Uchihori^{ac}, F. Urban^x, G. Vasiloff^a, Y. Wada^m, T. Wong^a, H. Yamaoka^t, K. Yamazaki^j, J. Yang^c, K. Yashiro^e, Y. Yoneda^j, S. Yoshida^s, H. Yoshii^{ad}, R. Zollinger^a, Z. Zundel^a

^aUniversity of Utah, ^bTokyo Institute of Technology, ^cEwha Womans University, ^dHanyang University, ^eTokyo University of Science, ^fKinki University, ^gYonsei University, ^hInstitute for Cosmic Ray Research, Univ. of Tokyo,

ⁱKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, ^jOsaka City University, ^kKanagawa University, ¹Univ. of Yamanashi, ^mSaitama University, ⁿAstrophysical Big Bang Laboratory, RIKEN, ^oRutgers University, ^pTokyo City University, ^qInstitute for Nuclear Research of the Russian Academy of Sciences, ^rWaseda University, ^sChiba University, ^tInstitute of Particle and Nuclear Studies, KEK, ^uKochi University, ^vRitsumeikan University, ^wSungkyunkwan University, ^xUniversite Libre de Bruxelles, ^yChungnam National University, ^zEarthquake Research Institute, University of Tokyo, ^{aa}Hiroshima City University, ^{ab}Advanced Science Institute, RIKEN, ^{ac}National Institute of Radiological Science, ^{ad}Ehime University

Telescope Array Collaboration

T. Abu-Zayyad^a, M. Allen^a, R. Anderson^a, R. Azuma^b, E. Barcikowski^a, J. W. Belz^a, D. R. Bergman^a, S. A. Blake^a, R. Cady^a, M. J. Chae^c, B. G. Cheon^d, J. Chiba^e, M. Chikawa^f, W. R. Cho^g, T. Fujii^h, M. Fukushima^{h,i}, K. Goto^j, W. Hanlon^a, Y. Hayashi^j, N. Hayashida^k, K. Hibino^k, K. Honda^l, D. Ikeda^h, N. Inoue^m, T. Ishii^l, R. Ishimori^b, H. Iton D. Wanav^{a,o} C. C. H. Wia, K. Kadata^o, E. Kakimoto^b, O. Kalachov^a, K. Kasahara^r, H. Kawai^s, ~120 collaborators in 5 countries S. Kawakami^j, S. ra^b, Y. Kitamura^b, V. Kuzmin^q, Y. J. K tsuyama^j, Japan, USA, Korea, Russia, Belgium J. N. Matthews^a, lura^u, H. Nanpei^j, T. Nonaka^h, A. No [•], A. Oshima^j,

S. Ozawa^r, I. H. Pa A. L. Sampson^a, L

J. D. Smith^a, P. So

. Sakurai^j, T. Shirahama^m, Takamura^e,

A. Taketa^z, M. Takita^h, Y. Tameda^k, H. Tanaka^j, K. Tanaka^{aa}, M. Tanaka^t, S. B. Thomas^a, G. B. Thomson^a, P. Tinyakov^{q,x}, I. Tkachev^q, H. Tokuno^b, T. Tomida^{ab}, S. Troitsky^q, Y. Tsunesada^b, K. Tsutsumi^b, Y. Uchihori^{ac}, F. Urban^x, G. Vasiloff^a, Y. Wada^m, T. Wong^a, H. Yamaoka^t, K. Yamazaki^j, J. Yang^c, K. Yashiro^e, Y. Yoneda^j, S. Yoshida^s, H. Yoshii^{ad}, R. Zollinger^a, Z. Zundel^a

^aUniversity of Utah, ^bTokyo Institute of Technology, ^cEwha Womans University, ^dHanyang University, ^eTokyo University of Science, ^fKinki University, ^gYonsei University, ^hInstitute for Cosmic Ray Research, Univ. of Tokyo,

ⁱKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, ^jOsaka City University, ^kKanagawa University, ^IUniv. of Yamanashi, ^mSaitama University, ⁿAstrophysical Big Bang Laboratory, RIKEN, ^oRutgers University, ^pTokyo City University, ^qInstitute for Nuclear Research of the Russian Academy of Sciences, ^rWaseda University, ^sChiba University, ^tInstitute of Particle and Nuclear Studies, KEK, "Kochi University, "Ritsumeikan University, "Sungkyunkwan University, ^xUniversite Libre de Bruxelles, ^yChungnam National University, ^zEarthquake Research Institute, University of Tokyo, ^{aa}Hiroshima City University, ^{ab}Advanced Science Institute, RIKEN, ^{ac}National Institute of Radiological Science, ^{ad}Ehime University

SD, Monocular and Hybrid Spectra

Photon Upper Limit

Anisotropy (Auto-correlation)

AGASA reported clustering within 2.5° for energy > 40EeV. TA found no clustering within 2.5°.

Extended search for larger angles δ and higher energy.

Anisotropy (LSS)

Composition measured by TA is consistent with proton.

Data (white point) and Model distribution (shaded region) from LSS within 100Mpc.

When deflection angle θ set to 6°, p-value of isotropy is 0.001.

Physics Summary

Significance of the five-year SD spectrum suppression is 5.7σ .

Mass composition is consistent with proton.

Arrival direction at high energy seems inconsistent with isotropic distribution.

To Extended and Affiliate Experiment

TA Low Energy Extension (TALE) Basically it uses same method as TA, relatively specific for hybrid observation. The observing energy range is down to 10¹⁷eV (LHC). TA+TALE Project Area TALE **TA Middle Drum** Tale SD s Surface Detectors Comm Towers Fluorescence Detectors CLE OtherExistingRoads UnimprovedRoads MDF D 400 m spacing: 35 600 m spacing; 46 TALE SD MD C Additionally install 101 SDs

1.2 km spacing:

SD array

Partially installed and operating. Now, proposing full construction.

Non-Imaging CHErenkov array (NICHE)

This is the plan of low energy extension for TALE, whose energy range down to 10¹⁶eV for 200m spacing. The main purpose is composition study by Cherenkov pulsewidth, working with TALE.

TA High Energy Extension (TAx4)

Basically it uses same method as TA, with a FD and 3 times larger coverage area by SDs. SD full area can not be covered by FD field of view.

This experiment is mainly for anisotropy study,

This is for detecting more cosmic rays which have energy over GZK. If they are proton, their source is within 50Mpc. From our current result of the inconsistency with isotropy at high energy region, we are halfway to catching a clue?

Now, proposing construction.

TA Affiliate Experiment Prototype EUSO at TA TARA

TA Affiliate Experiment Prototype EUSO at TA TARA

TA Lightning Mapping Array (TALMA)

Because TASD observed the bursts of shower like events, which are correlated with lightning.

From five years TASD data, there are 10 bursts of shower trigger. The burst criteria is 3 shower trigger in 1 millisecond. The chance expectation for five years is less than 10⁻⁴.

Because TASD observed the bursts of shower like events, which are correlated with lightning.

From five years TASD data, there are 10 bursts of shower trigger. The burst criteria is 3 shower trigger in 1 millisecond. The chance expectation for five years is less than 10⁻⁴.

Some events in 5 bursts pass the reconstruction.

	date	time	usec	X [m]	Y [m]
AS	101004	165842	930565	11356	-7425
AS	101004	165842	930612	10478	-7368
AS	101004	165842	930835	11142	-8159
AS	110727	080615	124319	3447	1952
AS	110727	080615	124543	2897	2232
AS	110916	194056	567481	-3210	-9285
AS	110916	194056	567566	-3524	-9413
AS	120706	014911	184219	9847	-10702
AS	120706	014911	184307	7635	-9674
AS	120907	015545	380684	-8636	1254
AS	120907	015545	380755	-9857	-337
AS	120907	015545	380881	-9450	-961

Because TASD observed the bursts of shower like events, which are correlated with lightning.

From five years TASD data, there are 10 bursts of shower trigger. The burst criteria is 3 shower trigger in 1 millisecond. The chance expectation for five years is less than 10⁻⁴.

Some events in 5 bursts pass the reconstruction. These bursts are selected only by timing, but their core position is very close. In addition, these reconstructed shower front is very curved compared with normal shower. They seems start shower development at low sky.

	date	time	usec	X[m]	Y [m]
AS	101004	165842	930565	11356	-7425
AS	101004	165842	930612	10478	-7368
AS	101004	165842	930835	11142	-8159
AS	110727	080615	124319	3447	1952
AS	110727	080615	124543	2897	2232
AS	110916	194056	567481	-3210	-9285
AS	110916	194056	567566	-3524	-9413
			\rightarrow		
AS	120706	014911	184219	9847	-10702
AS	120706	014911	184307	7635	-9674
AS	120907	015545	380684	-8636	1254
AS	120907	015545	380755	-9857	-337
AS	120907	015545	380881	-9450	-961

distance from axis[m]

z

SD Event 080701 234921 873245

Lateral Number of Particle

Left plots are burst events. Right plot is a typical (normal) event whose zenith angle is almost same as left two events and its shower size is middle of left two events.

Waveforms

Left plots are burst events. Right plot is a typical (normal) event whose zenith angle is almost same as left two events and its shower size is middle of left two events.

Left plots' waveforms have less sharp rising edge than Right plot.

Correlation with Lightning Data from NLDN.

National Lightning Detection Network detects lightning by VLF. The lighting list contains lightning time, 2D coordinates, peak current and flag which indicates whether intracloud lightning or cloud-ground lightning.

AS Lg	date date	time time	usec usec	X [m] X [m]	Y [m] Y [m]	H[m] Flag	Correlation with Lightning Data from NLDN.
AS AS AS LG LG	101004 101004 101004 101004 101004	165842 165842 165842 165842 165842 165842	930565 930612 930835 930608 934058	11356 10478 11142 12480 10619	-7425 -7368 -8159 -5068 -8069	3963 4400 3270 C G	There are 4 correlations in 5 reconstructed bursts. This is good correlation with considering NLDN detection
AS As Lg Lg	110727 110727 110727 110727 110727	080615 080615 080615 080615 080615	124319 124543 124303 130887	3447 2897 3653 3084	1952 2232 2285 1996	4070 3070 C G	efficiency. AS line shows TASD event. LG line shows NLDN event.
AS AS AS AS	110916 110916 120706 120706	194056 194056 014911 014911	567481 567566 184219 184307	-3210 -3524 9847 7635	-9285 -9413 -10702 -9674	3253 3134 3770 3361	
LG AS AS LG LG	120706 120907 120907 120907 120907 120907	014911 015545 015545 015545 015545 015545	184122 380684 380755 380881 380675 390411	8997 -8636 -9857 -9450 -8942 -9635	-9670 1254 -337 -961 668 -1952	C 4446 4805 3361 C G	
LU	120907	U10040	409370	-000Q	-1003	u	

AS dat	e time	usec	X [m]	Y [m]	H[m]	Correlation with Lightning
LG dat	e time	usec	X [m]	Y [m]	Flag	Data from NLDN.
AS 10100 AS 10100 AS 10100 LG 10100 LG 10100 AS 11072 AS 11072	4 165842 4 165842 4 165842 4 165842 4 165842 4 165842 4 165842 6 165842 7 080615 7 080615	930565 930612 930835 930608 934058 124319 124543	11356 10478 11142 12480 10619 3447 2897	-7425 -7368 -8159 -5068 -8069 1952 2232	3963 4400 3270 C G 4070 3070	There are 4 correlations in 5 reconstructed bursts. This is good correlation with considering NLDN detection efficiency.
LG 11072 LG 11072	27 080615 27 080615	124303 130887	3653 3084	2285 1996	C G	AS line shows TASD event. LG line shows NLDN event.
AS 11091 AS 11091	6 194056 6 194056	567481 567566	-3210 -3524	-9285 -9413	3253 3134	These correlations are taken
AS 12070 AS 12070 LG 12070	06 014911 06 014911 06 014911	184219 184307 184122	9847 7635 8997	-9674 -9670	3361 C	only by timing, but the locations of bursts and lightning are also correlated
AS 12090 AS 12090 AS 12090 LG 12090	07 015545 07 015545 07 015545 07 015545 07 015545	380684 380755 380881 380675	-8636 -9857 -9450 -8942	1254 -337 -961 <u>668</u>	4446 4805 3361 C	very well.
LG 12090	07 015545 07 015545	390411 409370	-9635 -8608	-1952 -1653	G G	

AS date LG date	e time e time	usec usec	X [m] X [m]	Y[m] Y[m]	H[m] Flag	Correlation with Lightning Data from NLDN.
AS 101004 AS 101004 AS 101004 LG 101004 LG 101004 AS 110727 AS 110727	4 165842 9 4 165842 9 4 165842 9 4 165842 9 4 165842 9 4 165842 9 4 165842 9 4 165842 9 7 080615 1 7 080615 1	930565 930612 930835 930608 934058 124319 124543	11356 10478 11142 12480 10619 3447 2897	-7425 -7368 -8159 -5068 -8069 1952 2232	3963 4400 3270 C G 4070 3070	There are 4 correlations in 5 reconstructed bursts. This is good correlation with considering NLDN detection efficiency.
LG 11072 LG 11072	7 080615 1 7 080615 1	124303 130887	3653 3084	2285 1996	CG	AS line shows TASD event. LG line shows NLDN event.
AS 110916 AS 110916 AS 120706 AS 120706 LG 120706	6 194056 8 6 194056 8 6 014911 1 6 014911 1 6 014911 1 6 014911 1	567481 567566 184219 184307 184122	-3210 -3524 9847 7635 8997	-9285 -9413 -10702 -9674 -9670	3253 3134 3770 3361 C	79% of the NLDN lightning data have flag "G(cloud-ground)". However, all synchronized 4 lightning strokes have flag
AS 12090 AS 12090 AS 12090 LG 12090 LG 12090 LG 12090	7 015545 3 7 015545 3 7 015545 3 7 015545 3 7 015545 3 7 015545 3 7 015545 4	380684 380755 380881 380675 390411 409370	-8636 -9857 -9450 -8942 -9635 -8608	1254 -337 -961 668 -1952 -1653	4446 4805 3361 C G G	"C(intracloud)". And all <mark>related</mark> subsequent strokes have flag "G(cloud-ground)".

High Energy Radiation Shower Geometry with Lightning

Summary

Some Extended Experiments and Some Affiliate Experiments are planned and going on.

End

Thank You

Backup

Surface Detector

Electronics: 50MHz FADC Charge Controller GPS Wireless LAN

Data Acquisition:

Shower Trigger is generated by adjacent 3SDs whose signal is over 3MIPs in 8μ s. Waveforms for all SD within 32μ s from shower trigger time.

Scatter plot of H with Energy or Zenith (080511-100907)