Observation of Ultra-High Energy Cosmic Rays (UHECRs) - status and prospects -

> CosPA 2013, Honolulu November 15th, 2013 M.Fukushima ICRR, Univ. of Tokyo

UHECRs Detector

- Pierre Auger Observatory (Auger) in Malargue, Argentina
- Telescope Array (TA) Experiment in Utah, USA

Ground Array + Air Fluorescence Telescope

SD

Surface Detector

- Duty ~100%
- High Statistics > Spectral shape
- + ~Uniform sky sampling > Anisotropy

FD <u>Fluorescence</u> Detector

- Total absorption calorimetry > Energy scale
- Imaging > Xmax > Particle Composition
- Duty ~ 10%

TA

The Pierre Auger Observatory_

Air Fluorescence : Reference model established

Reference Model proposed by B. Keilhauer & experimental groups at UHECR2012 @CERN.

B. Keilhauer et al.,
UHECR 2012M. Ave et al.T. Shibata,
ICRC 2013arXiv:1210.1319ApP 28(2007)41ICRC 2013

Air Fluorescence: 337nm Yield [photons/MeV]

*)

Integrated Yield from Electron Beam relative to AirFLY yield.


```
AirFLY = 5.61 \pm 0.06 (stat) \pm 0.22 (sys)
```

for 1013 hPa and 293 K

Controlled laboratory measurement

M. Ave et al.

AirFLY collaboration

ApP 42(2013)90

T. Shibata

ICRC 2013

TA measured the AF yield in situ using

- 40 MeV electron beam from linac injected into the air.
- FD telescope with calib. database.
- Reference AF Model (spectrum, P-T-RH dependence)
- ΔE by GEANT-4 converted to photons with AirFLY yield.

ELS (data) / AirFLY (MC) = $0.96^{*)} \pm 0.01$ (stat) ± 0.15 (sys) for ~860 hPa, $-17^{0} \sim 17^{0}$ C

0.99 with -3% correction not included in MC

Energy Calibration E'_{SD} (S₃₈ for Auger) vs E_{FD} using hybrid events

 Zenith attenuation of VEMs obtained from Constant Intensity Cut (CIC)

V. Verzi, ICRC2013

air shower simulation.

Energy Spectrum

Energy Spectrum of Cosmic Rays

THE AUGER ENERGY SPECTRUM

Updated at ICRC2013

with New Energy analysis

5 year TA SD spectrum

H. Sagawa D.Bergman ICRC 2013

Spectrum at UHE : Auger and TA

D. Bergman ICRC 2013 From Y. Tsunesada ICRC 2013 Rapporteur Talk

Spectrum at UHE : Auger and TA

Results of Broken Power Law Fit

	Auger	TA
γ-1	3.23 ± 0.01	3.28 ± 0.03
E _{ANKLE}	10 ^{18.72} eV	$10^{18.70} \mathrm{eV}$
γ-2	2.63 ± 0.02	2.69 ± 0.03
E _{1/2}	10 ^{19.63} eV	10 ^{19.74} eV

 Spectral shape: Auger and TA agree well for E < ~10^{19.3} eV if overall E-scale shifted by 10%.

$$E_{1/2}$$
: $E_{AUGER} = 0.78 \times E_{TA}$
(w/o 10% rescale)

D. Bergman ICRC 2013 From Y. Tsunesada ICRC 2013 Rapporteur Talk

Astrophysical Scenario : AUGER

A. Schulz, ICRC 2013

Astrophysical Scenario: TA

Fit with extra-galactic proton

Source Distribution

- Uniform
- LSS (~2MASS XSCz)

Energy Loss with

- CMB
- Infra-Red

using CRPropa 2.0 simulation checked with analytic ∆E. No magnetic field.

4-parameter fit

- Injection spectrum : E ^{-p} E_{max} = 10²¹ eV
- Evolution : $(1+z)^m$
- Flux normalization

• Energy scale

For LSS P = 2.37 + 0.08 - 0.08m = 5.2 + 1.2 - 1.3Log E'/E = -0.02 + 0.04 - 0.05

> E. Kido ICRC 2013

Particle Composition

Auger Xmax (updated at ICRC 2013)

- + statistics
- AFY updated.
- PSF updated.
- Calibration etc.

```
<Xmax> larger
+13 g/cm<sup>2</sup> at 10<sup>18</sup>eV ~
+6 g/cm<sup>2</sup> at 10<sup>19.5</sup>eV
```

RMS(Xmax) larger < 10 g/cm² for 10¹⁸⁻¹⁹ eV

E.J. Ahn, M. Unger ICRC 2013

Auger LnA Study

<Xmax>, σ (Xmax) \rightarrow <InA>, σ _{InA}

Using $\langle X_{\max} \rangle \approx \langle X_{\max}^p \rangle - D_p \langle \ln A \rangle$ $\sigma (X_{\max})^2 \approx \langle \sigma_i^2 \rangle + D_p^2 \sigma (\ln A)^2$

DP : elongation rate $\sigma j^{\ 2}$: mass averaged shower fluctuation

- $\langle \ln A \rangle$ decreases until $\sim 10^{18.3}$ eV
- increase of $\langle \ln A \rangle$ at higher energies.
- ▶ small $\sigma_{\ln A}^2 \lesssim 1$ at high energies

Bottom Line of Auger Xmax study:

 showers at ultrahigh energies are shallower and fluctuate less than proton simulations

> E.J. Ahn, M. Unger ICRC 2013

TA Xmax (updated @ICRC2013)

- Hybrid Xmax added
- + statistics and Analysis updated for Stereo Xmax
- Analysis using QGSJET-II-03
 SIBYLL
 QGSJET-I

1e-15

1e-20

18

18.5

19

.

Fe SIBYL

20

19.5

is consistent with proton by stereo and hybrid analyses.

UHE Gammas and Neutrinos

- No candidates found. Limits are updated.
- Some Top-down models are strongly constrained.
- Cosmogenic neutrinos maybe showing up soon.
- GZK gammas may be seen in next generation array.

Hadronic and Nuclear Intercation above LHC

Air Shower Simulation

p-Air Cross Section by Auger $(10^{18} < E < 10^{18.5} eV)$

Observed Λ_η matched by tuning $\sigma_{\mbox{\tiny p-Air}}$ in model

Inelastic σ_{p-p} obtained by Glauber model.

 PRL 109(2012)
 R. Ulrich,
 K.H. Kampert

 062002
 ICRC 2011
 ICRC 2011

Observed SD Signal vs Air Shower Simulation

G. Farrar, H. Sagawa, ICRC 2013 ICRC 2013

Observed µ Signal vs Air Shower Simulation

Auger

- Separating μ and EM signal by wave form and timing.
- $E \sim 10^{19} \text{ eV}$ and $d \sim 1000 \text{ m}$

- Energy and μ rate of MC can be fitted
- Using Xmac DATA ~ Xmax MC events.

B. Kegl

ICRC 2013

G. Farrar,

ICRC 2013

Arrival Directions

Anisotropy
Association with Astronomical Objects
Clusters of events

A Cluster of Events in Hotspot

Looser cuts:

TΑ

- No 1.2 km boarder cut
- θ < 55⁰
- E > 57 EeV

2008 May – 2013 May: A Total of 72 events selected.

Oversampling with $r = 20^{\circ}$ circle

Background from 72 random isotropic events estimated by MC

Maximum significance in hot spot is 5.1σ by Li-Ma method

Post-trials chance probability is being estimated.

Pierre Auger Observatory
Telescope Array

prospects

Auger extension for efficient mu-tag at each SD and \bullet TA extension for x4 acceptance (+500 SDs and +1 FD) Collaboration started on S+N all sky coverage, common anisotropy analysis understand differences in composition and E-scale by exchanging calib, analysis, simulation, tank/scint... Both are harboring RD projects for Radio detection (MHz, GHz, Radar,...) Testing and calibrating JEM-EUSO prototype High performance SD/FD/RD for future super-Ground-Array • Earth and atmospheric science JEM-EUSO on ISS (2017 -) super-Ground-Array

Auger and TA run for next 10 years with

TAx4: Near Future Operations of TA

- Construction expected in 2014-2015.
- Anisotropy and Hotspot : ~5σ confirmation by 2019.

Common Isotropy Analysis using Auger and TA data

Upper limit on 1st harmonic amplitude (Auger), but change of phase seen?

0

-80 -60 -40 -20 0

20

60

80 δ [°]

O. Deligny,

ICRC 2013

40

NAuger~10900 (~32000 km sr yr)

Octocopter of Auger flew twice in 2012 and 2013 over TA's night sky with calibrated UV-LED light source.

ELVES observed by Auger FD

Burst of particle showers observed by TA SD associated with lightning

-10

-12

-14

-8

12

10

12

5 bursts in 5 years

- Example of one burst
- 2 particle showers within 1ms.
- ~10⁻⁴ event from randoms.

- Core locations ~2km apart.
- Common "origin" ~3km above Ground.
 (highly curved shower front r~3km)
 - Lightning found within 1ms (NLDN-db)
 - Lightning location ~ core location

Tonachini, K.H. KampertT. OkudaICRC 2011CosPA 2013

End

TA

FD Event

V. Verzi, ICRC2013 A. Lettessier-Selvon ICRC2013

$$SD_{1500m} - SD_{inclined} - SD/FD Hybrid & SD_{750m}$$
 Spectra
 $SD_{1500m} - SD_{inclined} - SD/FD Hybrid & SD_{750m}$ Spectra
 $SD_{1500m} - SD_{1500m}$ Spectra
 $SD_{150m} - SD_{150m}$ Spectra
 SD_{150m

SD - FD monocular - SD/FD Hybrid Spectra

Consistent among Different methods.

Statistics limited Below 10^{19.6} eV.

D. Bergman ICRC 2013

EAS with Old CR Models : X_{max} 900 HiRes-MIA HiRes (2005) 0 р 850 Yakutsk 2001 Fly's Eye Φ Yakutsk 1993 Δ 800 Auger (2010) QGSJET01 Ж (g/cm²) 750 <X_{max}> 700 Fe 纨 650 600 ---- QGSJETII-03 550 10¹⁸ 10¹⁹ 10²⁰ 10¹⁷ (eV) Energy

T. Pierog and D. Heck ICRC 2013

EAS with Re-tuned CR Models : X_{max}

T. Pierog and D. Heck ICRC 2013

S(1000) attenuation function

- Empirical correction with 3rd deg. polynomial $CIC(\theta) = 1 + ax + bx^2 + cx^3 (x = \cos^2 \theta - \cos^2 38^\circ)$
- Zenith angle independent energy estimator $S_{38} = S(1000)/\text{CIC}(\theta)$

• In case of SD 750 m array: $S(450) \Rightarrow S_{35}$. Separate attenuation function.

Air Fluorescence : 337nm Yield by TA electron beam calibration

M. Ave et al. AirFLY collaboration ApP 42(2013)90 ICRC 2013

Air Fluorescence Yield using ELS beam

TA and HiRes use

- FLASH spectrum
- Modified Yield of Kakimoto et al.

ELS (data) / TA (MC) = $1.18^{*} \pm 0.01$ (stat) ± 0.18 (sys) for ~860 hPa, $-17^{0} \sim 19^{0}$ C

*) 1.22 with -3% correction not included in MC

Ravignani (693), Tueros (705), Schulz (769), Băuml (806), Verzi (928), Matthews (1218)

ENERGY SCALE III

A. Lettessier-Selvon, ICRC2013

Update of X_{max} Results

accumulated effect of improved reconstruction and calibration[†]:

most important change:

convolution of point spread function[‡] with lateral shower width

 $ightarrow \Delta X_{max} \sim +$ 10 g/cm² at low energies

[†]V. Verzi for the Auger Collab., ICRC #0928, [‡]J. Bäuml for the Auger Collab., ICRC #0806

X_{max} Distributions

Auger 2013 preliminary

EJ. Ahn, M. Unger ICRC 2013

Expectation from LSS

• Sources:

with 5 < D < 250 Mpc : 2MASS galaxy redshift catalog (XSCz)
Apparent magnitude < 12.5 and
extrapolate with luminosity density function
Galactic center is extrapolated from surroundings
with D > 250 Mpc: uniform distribution

• Propagation:

proton with E^{-2.4} at origin

-dE with CMB interactions (average energy loss)

• Magnetic Field:

Gaussian smearing (6⁰ for shown plots) No regular GMF deflection is introduced

FIG. 5.— Sky map of expected flux at E > 57 EeV (Galactic coordinates). The smearing angle is 6°. Letters indicate the nearby structures as follows: C: Centaurus supercluster (60 Mpc); Co: Coma cluster (90 Mpc); E: Eridanus cluster (30 Mpc); F: Fornax cluster (20 Mpc); Hy: Hydra supercluster (50 Mpc); N: Norma supercluster (65 Mpc); PI: Pavo-Indus supercluster (70 Mpc); PP: Perseus-Pisces supercluster (70 Mpc); UM: Ursa Major (20 Mpc); V: Virgo cluster (20 Mpc). ApJ-757(2012)26